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ABSTRACT

Two different approaches to forecasting corn yields are compared using

data collected in nine Missouri fields in 1977. One approach involves the
use of nonlinear regression techniques to fit growth data to a logistic
model. This approach requires the use of only current season data to

produce biological grain yield forecasts. The report discusses several model
variations free of least square model assumption violations. The second
approach applies historically estimated linear regression parameters to
current season data to calculate yield. Examination of the models shows
similar forecasting abilities with acceptable forecasting errors one month
before maturity. An upward bias is found in final estimates of net yield.
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Forecasting Corn Yields:
A Comparison Study Using 1977 Missouri Data

Carol C. House?*

INTRODUCTION

It is a major responsibility of the Statistics Unit of the Department of
Agriculture's Economics, Statistics and Cooperatives Service to forecast
crop yields several months before the crop has matured. Tools used in
making such forecasts include general linear regression models whose pa-
rameters have been estimated by use of historic data. These "between-year
models'" depend on a base period of time, usually three years, to supply
data on the relationships of various plant measurements to final biolog-
ical grain yield. An implied assumption is made that the present year is
a part of the composite population which also includes these base period
years. The model parameters that have been estimated are then used in
conjunction with current year counts and measurements to forecast current
year biological yield.

The Statistical Research Division has been involved in a continuing effort
to improve these forecasts by exploring new models that eliminate the need
for the assumption of homogeneity between growing seasons, employ the di-
rect input of environmental variables such as rainfall and temperature,
and/or are designed to give reliable forecasts earlier in the growing sea-
son. Since 1973 much of such work has centered around the use of a logistic
growth model and the nonlinear regression techniques needed to estimate its
parameters.

During the 1977 growing season, data were collected in nine corn fields in
Missouri as part of the 1977 Corn Environment and Growth Study (CEGS). The
data were used to evaluate the forecasting and estimating ability of this
logistic growth model applied to corn production, and compare these results
with forecasts and estimates produced by the currently used '"between-year"
linear models. Data were collected to allow field level estimates of the
variables of interest, and were analyzed as nine replicates of a field lev-
el experiment. The nine corn fields in which data were collected were
selectively chosen and not necessarily representative of the state as a
whole. For this reason, strict statistical inferences to any population
larger than the 9 fields would not be valid.

* Mathematical Statistician; Statistical Research Division; Economics,
Statistics, and Cooperatives Service; U.S. Department of Agriculture;
Washington, D.C. 20250.



The two types of models were evaluated and compared in two respects: their
ability to forecast yield of an immature crop and the ability to estimate
such yield at maturity. One hypothesis was that the within-year logistic
model would be more responsive to current field conditions affecting the
growing plants and therefore produce more accurate forecasts during the
season. However, results were similar for both types of models. For

yield estimation at maturity, the linear models reduced to a crop cutting
procedure which required no model fitting or parameter estimation. Because
of this, these models were expected to produce more accurate estimates.
Check data of actual farmer production measured at an elevator after har-
vest was used to evaluate the models' estimation capabilities. Results
again were similar for both model types. Unfortunately, both models were
less accurate than expected.

A report of the 1977 CEGS project covering the data collection activities
and analysis of the data is presented here. The objectives of this paper
are to:

1) Describe the data collection and handling techniques
involved in the study.

2) Present a discussion of the logistic growth model and
the results from its use to forecast field level yields.

3) Discuss the between-year linear regression type models
and the forecasts and estimates generated using this
1977 data set.

4) Present the techniques and results for estimating har-
vesting loss.

5) Compare the estimates from models in 3) and 4) above
with each other and actual farmer production as measured
at the elevator.

6) Summarize the conclusions from the analysis and make
recommendations for future study.

Some additional data were collected in the research fields during this same
time frame, consisting primarily of weather and environmental variables.
These data could be of value in the recommended future analysis of the yield
data, but they will not be discussed or analyzed in this report.



DATA COLLECTION

SAMPLE FIELD SELECTION

Nine fields were purposely selected throughout the major corn producing
areas of Missouri. Each of the nine was located in a different geograph-
ical region of the state. 1In each region, the selected field was less
than twenty-six acres and chosen such that it lay within 0.7 miles from

1/

an ASCS= monitored weather station and within a reasonable driving dis-
tance from the home of the person collecting the data. Cooperating farm
operators agreed to keep the research fields separated from other fields
during harvest operations in order to obtain actual weight measurements
at the elevator for all grain harvested.

Because of the nonrandom selection process in drawing the sample of
fields, no effort was made to draw inference from the analysis in this
report to the production of corn in the entire state of Missouri. Anal-
ysis was done at a field level, and yield forecasts only reflect the
fields involved.

SELECTION OF PLOTS WITHIN A FIELD

In each quarter of a sample field, four pairs of '"pre-harvest" and "post-

harvest" plots were randomly selected. Each pre-harvest unit or plot
consisted of two parallel row segments. One row segment was exactly 15
feet long while the other was of variable length and consisted of 50 con-
secutive corn plants. Each post-harvest plot consisted of two 15-foot
parallel row segments and their row middles. For even-numbered plots, the
post-harvest plot was located 4 rows and 12 paces further into the field
than its associated pre-harvest plot. For odd-numbered plots, the post-
harvest plot was located 4 rows and 12 paces closer to the starting corner.

Data collection was carried out in several overlapping phases: plot layout
and plant population counts, silking observations, weekly sampling of ears
to send to the laboratory for dry weight determination, monthly measure-
ments of variables used in the operational objective yield program, labo-
ratory measurements, elevator weights of final production, and post-harvest
gleaning work for determining harvest loss. A basic description of data
collection procedures follows. A more complete description can be found in

2/

the enumerators and laboratory manuals for this project. (XIII, XIV, XV)--

1/ Agricultural Stabilization and Conservation Service of the U.S. Depart-
ment of Agriculture. Local offices throughout the State participated in a
weather monitoring network during the 1977 growing season.

2/ References to sources will be indicated by parenthesized Roman numerals
which are associated with entries on the references page at the end of the
report.



PLANT POPULATION COUNTS

During the first visit to each sample field, pre-harvest plots were laid
out. Plants were counted in 30 feet of row in each plot. Row widths
were measured at the end of the plot, so that plant population estimates
could be made.

SILKING OBSERVATIONS

The purpose of this phase of data collection was to obtain the time of

silk emergence for each of the 50 consecutive plants in the variable length
row of each unit. Silk emergence for a plant was defined to have occurred
when silk was first observed on any ear of the plant or its tillers. The
silking date for a plant was set as the date midway between the date of the
visit when silk emergence was first observed and the date of the previous
visit. Observations were made for silk emergence every 3-4 days during
peak silking periods, and weekly during less active silking periods. Silk-
ing date has been shown to be a good proxy for the date of pollination, i.e.
the beginning of kernel growth in an ear. (XIX)

A yellow tag was placed on a plant when silking was first observed. Only
plants with such tags were included in the remainder of the sampling process

as plants not silking were assumed to have no grain producing capability.

WEEKLY SAMPLING OF EARS TO SEND TO THE LABORATORY

When approximately 50 percent of the plants in the variable length row had
silked, the fourth phase of data collection began. These visits to the
sample fields were made weekly and continued for 9 weeks or until harvesting
of the field, whichever occurred first.

On each visit, two plants showing kernel formation were selected from each
unit in the following manner. Blocks of 5 plants were independently ordered
for sampling on the first through the ninth visit. One block of five plants
was never sampled. On any given visit, plants in the selected block were
observed in random order until two plants showing kernel formation had been
sampled. A plant was considered to have kernel formation if any of its ears
had such formation. Plants that did not silk were excluded from the popu-
lation sampled for grain production.

The ears from these sampled plants were sent to a special laboratory for
determination of dry matter weight. Great care was taken to maintain the
identity of the ears so that the dry grain weight of a plant could be asso-
ciated with its silking date.



MONTHLY MEASUREMENTS FOR BETWEEN-YEAR MODEL

The data collected from the second row segment in each plot (15 feet long)
was used for the between-year type linear regression models. Data from
this row were collected near the end of each month during the operational
survey period. All measurements in a plot were nondestructive until the
corn was judged to be mature. At this time the row segment was harvested
and weighed. The following measurements were made on each visit:

1) Number of stalks

2) Number of stalks with ears or silked ear shoots

3) Number of ears or silked ear shoots

4) Number of ears with kernel formation

5) Number of stalks with ears having kernel formation

Additional measurements were made on certain visits depending on the maturity
stage of the crop.

6) Average length of kernel rows on five ears

7) Length of cob for all ears

8) Weight of ears with grain
At maturity, when the row segment plants were harvested and the ears weighed,
four ears were shipped to a laboratory for measurement of shelling fraction

and moisture content.

POST-HARVEST GLEANINGS

As soon as possible after the farmer harvested the field, 16 post-harvest
plots were laid out to estimate harvesting loss. All whole ears and pieces
of ears lying inside the unit were picked up. 1In addition, all loose kernels
were picked up in half the unit. This grain was sent to the laboratory for
weights and moisture readings.

LABORATORY DETERMINATIONS

Laboratory work provided determinations needed for biological yield indi-
cations by the between-year and within-year models and the harvest loss
estimates. Ears sampled weekly for the within-year application, were sent
to the laboratory for determination of dry matter content. At the lab, two
kernel rows were chosen randomly from each ear. The kernels in each select-
ed row were carefully removed from the cob to prevent damage or puncturing



and to prevent removal of cob parts with them. Kernels from each indi-
vidual row were weighed after removal from the cob, and dried in an oven
for 72 hours at a temperature of 150°F to standardize moisture content.
This temperature and drying period were selected because they were found
to reduce moisture in grain at maturity to less than two percent, while
not burning the immature grain coming into the laboratory early in the
growing season. (XVI) Kernels were weighed after this drying process to
determine dry matter content. Determinations from each of the two sampled
kernel rows were averaged and expanded by the total number of kernel rows
to compute a mean dry grain weight for the ear. Dry weight of multiple
ears was then summed to the plant level.

Field measurements for the between-year model included the harvesting and
weighing of ears from the row segment at maturity. At this time four of
the harvested ears were sent to the laboratory. At the lab, each ear was
weighed, shelled, and then a shelled weight taken. The shelled grain was
tested in a moisture meter to give a reading of the percent moisture.

Post-harvest gleanings samples were also analyzed in the laboratory. The
shelled grain was weighed and placed in a moisture meter to determine the

percent moisture.

ELEVATOR WEIGHTS OF HARVESTED GRAIN

The farm operator agreed to get elevator weights of all grain harvested
from the research field. The grain from this field was kept separate from
all other grain until it was taken to an elevator where it was weighed and
moisture tested.
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LOGISTIC GROWTH MODEL

THE BASIC MODEL

The logistic growth model has been shown by previous studies to accurately
describe a growth process in corn kernel formation. The model gives the
relationship of kernel weight and development to the length of time the
kernels have been growing by using repeated observations from the current
year to estimate the parameters needed to predict the dependent growth
variable at maturity.

The form of the logistic model and its graphical representation are given
below:

Yi=————5“~—t——+ei i=1,2, ..., n
1+ 80 i

a, B, p nonnegative parameters

o<p< 1

Yi = dependent growth variable
ti = independent time variable
€, = disturbance term

1+ 8p i




The logistic growth model hypothesizes that kernel weight accumulates
slowly in a plant during the earliest stages of ear development, increases
at an increasing rate for a period of time, and then increases at a de-
creasing rate approaching an asymptotic maximum value.

Previous research efforts (XIX) have discovered a workable combination of
time and growth variables: '"time since silking" and '"dry kernel weight

per plant." "Time since silking", the independent time variable, was
defined as the estimated date of silk emergence (see section on Silking Ob-
servations) subtracted from the date when the plant was sampled.

The estimated dry kernel weight (in grams) for each ear of a plant pro-
cessed in the laboratory was summed to provide an estimate of "dry kernel
weight per plant." Plants with zero dry kernel weight were considered
"non-survivors' and deleted, since weight per plant would be expanded by
a "surviving'" plant population to produce yield.

To avoid possible dependence between data points, data from all plants
sampled from a plot on a particular visit were averaged to compute a mean
dry kernel weight and a mean time since silking. These means were used as
input variables in the logistic model. The model was fitted with data from
an individual field. The process was repeated for each of the nine fields
separately.

MODEL WEIGHTS AND ADJUSTMENTS

Estimates of the number of silked plants per acre for each plot were made

by adjusting the plant population estimate by the proportion that had silked.
Plot data of grain weight per plant were weighted by the plot estimate of
silked plants per acre. The following weight was used.

_ # of silked plants per acre .
wi = 10,000 i=1, 2, ..., n

The square root was incorporated to modify the effect of the weights for
extreme values of plant population. (In reality, the estimates of plant
population had small variances within field and thus the weighting had only
a small effect on parameter estimation.)

The weighted model below was fitted to the data using the Marquardt nonlinear
procedure in SAS (Statistical Analysis System). (I)

W) (¥) = (W) -+ ¢, i=1,2, ..., n



This model will be referred to as the unadjusted model. An examination
of the model residuals revealed that one of least squares' model assump-

tions was violated. The assumptions state that wiei is normally distrib-
uted, with

1]
o

E (W,e.) for all i
ii

Var (W.e.) 2 for all i
ii

1l
Q

Cov (wiei, Wjej) =0 for i # j

In reality, the disturbance term wiei has been observed to have a functional
relationship with the independent variable. Thus
wiei = Wiei(ti)

Var (wiei) = oé(t ) an increasing function of the time variable.
i

This condition is referred to as heteroscedasticity.

To correct for the assumption violation, the following model was used.

W,) (Y.) W, W,

_ i i’ _ A1 . o - + A1 . ei(ti)
o ] 1+ Bp 1 g

ui(ti) ui(ti) ui(ti)

~

where o is an estimate of the standard deviation of u,(t,) = W.e.(t.)
u, (t.) it i iiti

The disturbance term in this mdoel is:

1

~

u, t,
(t,)
o
uy (ey)
with variance
2
a
(L,
ul( 1)
2

Oui(ti)



This model will be homoscedastic as long as the ratio remains constant
over time. Several methods for estimating 9, (t.) have been developed
i1

in earlier research. Results from the following will be presented in
this report.

(1) Standard Error Adjustment Method

Gu,(t,) was derived as a step function. The relevant range of the

iti
independent time variable was broken into two-day intervals and a
sample standard deviation from the predicted value was computed for
each interval. The assumption is made that within a small time period,
Ei(ti) changes so little that it can be assumed constant.

(2) Logistic Adjustment Method

An examination of the residuals from the regression of the unadjusted model

suggested that o itself could have a logistic structure. The

u(t)
absolute value of the residuals from the unadjusted regression were
used in a nonlinear regression to fit the model

q; = ———“—T+6i i=1,2, ..., n
1+ vn "1

where 61 has mean zero and small constant variance. Once these re-

gression parameters u,v,n were estimated, the fitted equation

~ ~

o .
ui(ti) = —“—‘gr*g— i=1, ..., n
1 +vn 1

was used as an estimate of Oui(t)'

More discussion of these models can be found in an earlier paper, "A Within-
Year Growth Model Approach to Forecasting Corn Yields™. (V) Other methods of
adjustment for heteroscedasticity in growth data were developed by Larsen
using wheat data sets. (VII, VIII) Although these methods will not be
discussed here, further work with these data will include an examination of
these adjustment models when applied to corn growth.

10



Analysis of Forecasting Potential

When the nonlinear model is fitted, three parameters, o, B, p, are esti-
mated. As discussed earlier, a is the dry kernel weight at maturity for
the average plant. When the entire data set for a growing season is

~

available for analysis, a is an "estimate" of dry kernel weight per

mature plant. This o value is adjusted to the standard moisture level,
expanded by the number of plants per acre with grain surviving at maturity,
converted to a bushel figure, and adjusted for loss during the harvest
process. This figure should then be compared to some type of check data
to evaluate the model's ability to estimate yield, and to discover any
biases that may exist. This comparison is described in the section below
entitled "Analysis of Estimating Capability of Models."

The major purpose of this research was to develop and evaluate forecast-
ing techniques. Therefore, it was important to consider how the logistic
model, both unadjusted and with various adjustments, behaved when used to
forecast yield at various points throughout the growing season. To make
such a forecast, only data collected up to a certain date during the

growing season were used in the regression model. The estimated a based

on the data for a portion of the growing season is the "forecasted" dry
kernel weight per plant. The models were fitted to cumulative growth data
each week as new data became available. These weekly forecasts for the
unadjusted and two adjusted models are given for each field in Tables Al-A9
in the Appendix.

A number of criteria may be used to evaluate the forecasting performance
of one of these three models and compare it with another. The five dis-
cussed here are of two distinct types. The first type can measure actual
forecast error but requires data from the entire season to do it. The
second type of criteria can not provide actual forecast error. Instead
they provide measurements of the model fit to the data available at a
particular period of time. They do not "forecast" the model fit. The
value of this type of evaluation tool is that it cau be used during a
forecast period before criteria of Type 1 are available.

TYPE 1 - The following criterion was used in this analysis to measure
forecast error:

1) The absolute percent deviation of the forecast from the
estimate at maturity:

~ ~

a
W mlx 100

~

m

where . is the forecasted a value for week w, a is the estimate

of o at maturity (using all weeks of data).

11



Criterion (1) provides the best indication of actual forecast error. It
measures the ability of the model to produce a yield figure using early
season data only, by comparing these forecasts with the estimate the
model would make if it was fitted to the entire data set. It is the
author's opinion that it is the most important of the criteria.

The purpose of the model is to forecast crop yields. If the model fails
to perform satisfactorily as a forecaster, it makes little difference
what the size of the population variance is or whether the model is or
is not homoscedastic. Its major disadvantage is that one must have
final model estimates at maturity available to compute the deviations
and so it is of limited use during the actual forecast period. For

this reason criteria of Type 2 were examined.

TYPE 2 - These criteria were used to provide a measure of model fit and
performance that is available during the forecast period:

2) The absence of model assumption violation, specifically
heteroscedasticity.

3) The size of the residual mean square (RMS) from the
regression.

4) The size of the regression coefficients of determination
(R?'s).

5) The relative standard error of the primary parameter «:

O
—— x 100
a

~ ~

where o& is the estimated standard deviation of a.

Criterion (2) uses the degree of observed heteroscedasticity to compare
the models. This is important because the violation of least squares
assumptions can make more traditional evaluation tools unreliable. Un-
like criterion (1), the data can be checked for heteroscedastic errors
whenever the model is fitted during the forecast period. Criteria (3)

and (4) are traditiomally used to evaluate how well an hypothesized model
actually fits the data. They, also, can be computed during the forecast
period before criterion (1) is available. This is their primary value

in this analysis. The residual mean squares and R%?'s from the model fit
with early season data do not "forecast" the fit of the model at maturity,
but merely supply information on the model fit with data available up to
that point in time. Criterion (5) has been employed in earlier analyses
(v, VII, VIII, IX, X, XI, XIX) as a primary indicator of model performance
since it can be calculated during the forecast period. It is discussed
here to provide continuity, but its value in the presence of varying de-
grees of heteroscedastic error is now questioned.

12



Each of these criteria is discussed in more detail in the text that
follows. Tables providing additional information appear in the appendix.
The percent deviation of o from the estimate at maturity was computed for
all weeks in each field separately. These values are tabulated in the
Appendix in Table AlO.

No upward trend in forecast levels was observed as the weekly forecasts
approached maturity. For the past several years, such a trend has been
observed in the weekly forecasts of corn yield generated by the logistic
model. The data collected during these years was designed to run the
model on a state or region-wide basis. One would suspect more variability
in that type of data set than in data at the field level. As a part of
this earlier analysis, simulated data that actually fit the model were
generated through stochastic processes. When these data were used to
generate weekly forecasts, this phenomenon of upward creeping forecast
levels was not observed. (V, VI) The results from the simulated analysis
and these new results obtained from field level fittings tend to suggest
that the upward trend could be caused by trying to fit together into a
single model data that more properly should be divided into several homo-
geneous groups, fit separately, and the results averaged together to com-—
pute state level forecasts. More research should be directed toward this
problem using the earlier data sets.

The various patterns of convergence to the final estimated yield produced
by the three models' forecasted values can be observed in the following
bar graphs. They show by individual field the absolute value of the per-
cent deviation from the final estimate of the forecasts produced with

four to eight weeks of data. 1In analyzing the deviations between the
forecasts and final estimate for each model, several points were considered
individually for each field. We were interested in knowing 1) at what
weekly visit did the deviation drop below the 5% level for the first time,
2) when did it drop permanently below the 5% level, and 3) finally what
was the deviation for the last visit before September 1 (an important fore-
cast date for our Agency). The results for each field are tabulated on

the corresponding bar graph. ’

The 1977 growing season was earlier than usual in the Midwest. By the
October 1 forecast date, all fields were mature and thus had zero deviation.
For the September 1 forecast, all but one field had at least seven weeks

of data with deviations well below the 5% level. In that one remaining
field, the logistically adjusted model had a deviation just over 5%, while
the standard error model's deviation was three times larger. The logisti-
cally adjusted model looked somewhat better than the standard error model
when it came to the weekly visit with absolute deviation below 5%Z. It was
smaller three out of nine times and equal to the other four times. For

the visit when the 5% level was reached permanently, the standard error

was earlier only twice. Week by week, over all fields, the absolute de-
viation of the logistic adjustment was smaller more often than the deviation
of the standard error model.

13



Figure 1--Absolute value of percent deviation of model
forecasts from models' final estimates
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Figure 2--Absolute value of percent deviation of model
forecasts from models' final estimates
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Figure 3--Absolute value of percent deviation of model
forecasts from models' final estimates
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Figure

forecasts from models' final estimates
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Figure 5-—Absolute value of percent deviation of model
forecasts from models' final estimates
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Figure 6--Absclute value of percent deviation of model
forecasts from models' final estimates
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Figure 7--Absolute value of percent deviation of model
forecasts from models' final estimates
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Figure 8--Absolute value of percent deviation of model
forecasts from models' final estimates
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Figure 9--Absolute value of percent deviation of model
forecasts from models' final estimates
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A paired t-test was run to test the difference of the two mean absolute
deviations. (The test assumed a normal distribution of both samples with
equal but unknown variance.) The results showed that no significant dif-
ference existed at any significance level above 50%. Thus we found that
in a comparison of the two adjusted models by means of criterion #1, the
logistic adjustment appeared on the surface to be somewhat better, but
the two models were not different enough to draw any statistical conclu~
sions.

The second criterion for model comparison is the absence of model assump-
tion violations, specifically regarding the assumption of constant variance
over time. Examining the residuals from the fit of the original data with
the logistic model showed this assumption was violated, so the two adjusted
models were then fitted. The first indication that these adjusted models
had alleviated the problem came in the residual mean squares. The RMS is
an estimate of 02, The estimates for the unadjusted model increased as
more data were added, indicating the later season data possessed a larger
amount of variability. The RMS's of both adjusted models remained relative-
ly constant with the addition of later season data. To quantify this change
more precisely for the purpose of comparing the adjusted models, two addi-
tional statistics were generated. R(r,t) is the correlation coefficient
between the absolute value of the regression residuals and the independent
time variable. Prob >|R(r,t)| gives the probability that the random sample
correlation coefficient will be greater than the computed value for this
set of data. The probability is computed under the null hypothesis that
the correlation between the two variables is zero. Thus low values would
correspond to the rejection of the null hypothesis while large value would
lead to a failure to reject. Both of these statistics are tabulated in

the Appendix. For the unadjusted model, the correlations were in the range
of 0.4 or 0.5, and the computed probability always led to a rejection of
the hypothesis of zero correlation. To compare the adjusted models,

Prob >|R(r,t)| was used to determine how often each model would reject the
hypothesis of zero correlation with 95% confidence. In six of the nine
fields, the two models behaved in a similar manner, rejecting the null
hypothesis for at most one weekly run of the model. In two of the remain-
ing fields, the logistically adjusted model failed to eliminate the hetero-
scedasticity more than two-thirds of the time, while the standard error
model performed as it did in the other six fields. However, the decision
to reject or fail to reject the null hypothesis was often borderline. If
one were to use 907 confidence, the logistically adjusted model would have
rejected it only once more often than the standard error in one of the
fields and twice in the other. Results from the final field were very
different. The standard error model worked well to eliminate the hetero~
scedasticity, while the logistic adjustment did no better than the unad-
justed. On this field, there was difficulty getting convergence in the
regression fitting the absolute value of the residuals to a logistic curve.
This could account for the failure in the logistic adjustment.
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The estimate of the population variance (the residual mean square) was
examined for each nonlinear regression run. These figures appear in
the Tables Al1-A9 in the Appendix. In examining several model fittings
of the same data set, the residual mean square can be used as an in-
dicator of "goodness-of-fit." A smaller RMS means that more of the
variation in the data points can be explained by the model. It is
important to emphasize here that care must be taken before any compar-
ison of RMS's is made between two distinct data sets. Adjusting the
original data for heteroscedasticity is equivalent to fitting the
logistic model to a data set with inherently less variability. Thus a
comparison of the RMS from the unadjusted model and either of the two
adjusted models would not be appropriate. However, it is appropriate
to compare the RMS's of the two adjusted models since the data sets in
question were formed in a similar manner. They merely used different
estimates of o(t) to try to achieve a population variance equal to one.

The RMS's for the two adjusted models revealed that the standard error
model was consistently lower (and closer to one) than the logistic
adjustment, usually by .5 or .6. A paired t-test showed that the dif-
ferences were significant at the .01 level.

The next criterion for model comparison is the size of the regression
R?s. These were computed by week and field for each model. The standard
error model had slightly higher correlations than either of the other
two, although correlations from all models where high (consistently

> .85 and often z'.9). This showed that the model fit was good for all
models. The small differences between models were not judged of suffi-
cient importance to allow discrimination.

The relative standard error, o./a of the primary parameter, o, was com—
a

puted for each regression run. This estimate was used as an indicator of

~

the confidence one can place on o at the specific point in time that data
were available to run the regression. It is important to keep in mind
that this estimate of variability does not include a forecasting error,
and late season changes in field growing conditions could shift the final

~

estimate of a outside a confidence interval determined by o./a and a. The
o

results of the calculations are given in the Appendix in Tables Al-A9.
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The presence of heteroscedasticity in a data set affects the standard
errors of the paramzters, and the estimates of those standard errors.
Draper and Smith conclude that "if weighted least squares analysis were
called for but an ordinary least squares analysis were performed, the
estimates obtained ... would not have minimum variance." (II, p. 80)
On the other hand, Goldberger states that estimates of such variances
may be understated when heteroscedasticity is present. (III) Thus,
two methods of reducing the presence of heteroscedasticity within a
data set could affect the estimates of the standard error such that the
more heteroscedastic adjustment appeared to more precisely estimate a

while the true standard error of o would be lower for the more homosce-
dastic adjustment. Because of this, it would be risky to use such
estimates as a basis for comparison between adjusted models.

The analysis above failed to produce a clear-cut decision on which of

the adjusted models was best overall. Each adjusted model provided some
information and desirable characteristics not provided by the other. An
attempt was made to utilize both outputs by employing a weighted average

of the two a forecasts. Initially, each model was given equal weight.

~

+ a, /2
se log

>

2 >
]

~

The results on Table 1 show the averaged a value and its percent deviation
from the final averaged estimate. When considered across fields, the

~

averaged o forecasts seemed to deviate from the final estimate to a lesser
degree than the logistically adjusted model (recall that this did slightly
better than the standard error) but a paired t-test showed no significant
difference between the absolute deviation from the two different methods.
The average difference was 1.07%.

It is of course possible to devise a large number of different weighting
schemes to combine the results of the logistic and standard error adjust-
ment models into a single indication of crop yield. Several have been
examined by the author. The schemes, having less theoretical basis than
a straight average and showing poor results, were uninteresting. Future
research should include additional attempts to produce more satisfactory
weighting schemes.
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Table 1--Grain dry matter per plant at maturity:

their percent deviations from final estimates

weighted forecasts and

Weeks of Field
Data 1 2 3 4 5 6 7 8 9

Forecast (grams) 156.9 192.4 110.4 99.3 117.3 190.9 161.6 176.3 164.2

4 Deviation (%) 5.9 24.9 =-21.6 -20.7 -10.1 -20.4 -18.8 -8.3 -19.0
Forecast (grams) 154.2 190.2 140.3 182.0 113.0 199.0 187.1 196.4 219.5

3 Deviation (%) 4.0 23.5 -0.4 45.4 -13.4 25.5 -5.9 2.1 8.3
Forecast (grams) 165.6 154.6 149.5 131.9 125.8 175.3 196.7 195.6 200.6

6 Deviation (%) 11.7 0.4 6.1 5.4 -3.6 10.5 -1.1 1.7 -1.0
Forecast (grams) 158.4 165.3 145.7 125.6 126.4 168.2 200.3 192.3% 211.4

/ Deviation (%) 6.9 7.3 3.4 0.3 -3.1 6.1 0.7 4.3
Forecast (grams) 149.9 152.9 142.1 130.0 124.8 158.6% 196.3 197.4

8 Deviation (%) 1.1 -0.7 0.9 3.8 ~4.4 -1.3 -2.6

9 Forecast (grams) 148.2% 154.0*% 140.9*% 125,2% 130.5% 198.9%* 202 .5%

* Final estimate



BETWEEN-YEAR LINEAR MODELS

These procedures are used in the current operational program to forecast
and estimate yields during the growing season from fruit measurements

and plant counts made in the field. The models used are simple linear
regression models, with different models used to forecast various com-
ponents of yield. 1In order to forecast yield, this procedure depends on

a base period of years to supply data to compute the relationships between
the various components of biological yield and the field measurements of
plant growth and development. These base period data were fit to the
linear models, estimating the parameters. The assumption was then made
that the current year is a member of the composite population of these
base years, and thus the relationships between vegetative measurements

and biological yield that existed during the base years continued to exist
during the current growing season. Data collected during the current year
were combined with the parameters previously estimated in an algebraic
expression to compute yield. No new regression was run with the current
data. At maturity, the use of these estimated parameters was no longer
needed to estimate yield. At this time corn was harvested and the actual
counts and weights were used to expand a plot estimate to the acre level.

The two primary components of yield used were the number of ears with

grain and the weight per ear at maturity. Once forecasts or estimates of
number of ears and weight per ear were calculated, these two variables

were multiplied together at the unit level with a conversion factor that
expanded the area of the unit to an acre and converted pounds to bushels.
These unit level forecasts were averaged across a field to provide the
field level forecast, as well as estimates of field level yield variability.

Data collection for this part of the study was done on a monthly basis
until harvest, providing a forecast of yield on August 1, September 1, and
October 1. The resulting forecasts and estimates appear in the Appendix

in Tables All through Al9.

MODELS TO FORECAST NUMBER OF EARS

Two models were used to forecast the number of ears. Model 1 forecasted
the number of ears with grain at maturity based upon the current count of
stalks made in the plot. Model 2 used the ratio of stalks with ears or
ear shoots to total stalks to predict the ratio of ears present to the
expected number of ears with evidence of kernel formation at maturity.
The forecasted number of ears could be determined by this ratio.
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Table

2--Models to forecast number of ears

Maturity 1/
Category Model™
1) No ears Y = a; +b; (stalks)
. _ B B #f ears ]
2) Pre-Blister | Y = w,,lap + bz(stalks{] + wyo STalke with cars
— e + £ ( stalks )
- I
r -
. — # ears
3) Blister Y = w3ylag + bz(stalks)| + w3,
— stalks with ears
ez + f3 ( stalks )
4) Milk Y = w,y|a, + by(stalks) | + g q_ #_ears ]
R ’ b2 stalks with ears
ey + fu ( stalks )
5) Dough Y = (# ears with grain)
6) Dent Y = (# ears with grain)
7) Mature Y = (# ears with grain)
1/ Model parameters estimated with historic data are a_., b., e., f,
— . i i i i
for 1 =1, 2, 3, 4.

Model weights determined by historically based expected precision

are w, .

1]

for 1 =

2, 3, 4 and

j=1, 2.
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Model 2 has historically provided better forecasts for corn varieties
with multiple ears per stalk, while Model 1 is better suited to the

] 1 .

situation where there is one ear per stalk.~/ Predictions for each
model were weighted together to derive the forecasted number of ears.
The weights used were dependent on the expected precision of each model

judged by historically based correlations.l/ Models 1 and 2 were used
exclusively for forecasting when plants were in early maturity stages
(milk stage or earlier). When the crop reached dough stage, the actual
field count of ears with grain was used for the forecast. At these
later stages it could be assumed that the developed ears counted would
be the same ears that would be counted at harvest.

Table 2 summarizes the models discussed above.

MODELS TO FORECAST WEIGHT PER EAR

Several models were used to forecast and estimate grain weight per ear,
depending on the maturity of the crop at the time of the forecast. Ear
weight was given in pounds of shelled grain per ear adjusted to 15.5
percent moisture.

For plots where ears were not yet present or had no actual kernel growth,
a straight historical average weight per ear was used. Model 1 was based
on the average length of kernel row on five ears sampled outside the unit.
Model 2 used the average length of cob measurements made nondestructively
over the husks. Models 1 and 2 were weighted together to provide a single
forecast for maturity stages three through six. When a unit was judged to
be mature, the ears were harvested and weighed. Four ears were sent to
the laboratory to estimate shelling fraction and moisture percent. These
measurements were used to make a direct estimate of yield with no reliance
on parameters estimated with historical data.

Table 3 summarizes.

ANALYSIS OF FORECASTING POTENTIAL

To compute a yield figure from the between-year linear models, historical
parameter estimates and weights were needed. The theory suggests that

data from each of the research fields should be collected for three years

to provide the historical base to estimate parameters. This was not avail-
able, and generally would not be available because of crop rotation. There-
fore, a substitution was made.

l/ Unpublished research. Methods Staff, Estimates Division, Economics,
Statistics and Cooperatives Service, U.S. Department of Agriculture.
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Table 3--Models to forecast weight per ear

Maturity

1
Category Model—/
1) No ears Y = Historic average
2) Pre-Blister Y = Historic average
, B average kernel B B average kernel, |
= +
3) Blister Y MB1.33 + b3 ( row length )|+ w32Lf3 d( row length )
. B average kernel ] B average kernel, |
= + +
4y Milk Y wul_f” + by ( row length ) Wu2 f“ dy ( row length
R average kernel. | R average kernel,|
= 5 + + [= +
5) Dough Y w5y fS bs ( row length )_ wsz |es + ds( row length l
_ [ average kernel, | B average kernel,
6) Dent K “61 36 * bs row length )_ T we2 f6 * de row length l
average field (shelling (dry matter)
7)  Mature v = weight per ear fraction fraction
adjustment fraction to )
convert to 15.57 moisture
1/

Model parameters estimated with historic data are a;s bi’ c,, d

for i =3, 4, 5, 6.

i i

Model weights determined by historically based expected precision

are w,. for i
1]

3, 4, 5, 6 and

j=1, 2.
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The parameter estimates used were based on the three previous growing
seasons for the entire state of Missouri. This required the assumption
that the nine fields in the study were similar to the average field in
Missouri in terms of the relationships between the predictor variables
and final yield.

The suitability of this assumption should be the subject of future
research. This research should include the following:

1) Use the combined data from all fields for this single
growing season to estimate parameters that will then be
used on the individual field level. This procedure is
somewhat artificial since it could not be done in a real
forecasting situation. It would, however, tell what these
models are capable of under nearly ideal conditions, and
will give an indication of how much departures from the
earlier assumption of homogeneity with the entire state
might hurt the forecasting capabilities.

2) Compare the relationships between yield and predictor
variables in these nine fields with relationships from
the entire state (analysis can be done with data collected
in the operational program).

It is important to reemphasize that any problem with the use these para-
meters estimates applies only to the forecasting models. The yield esti-
mates at maturity were made by standard crop cutting and expansion methods
that involved only the data collected at that time. Such estimates should
be unbiased with variability controlled primarily by sample size.

One of the first things that was noticed during the analysis was a high
degree of variability in obtaining field level estimates. The standard
deviations were computed between plots in a single field. The average
standard deviation for biological yield was just under a 20 bushel per acre
for the August 1 forecast. The minimum value was 11i.1 bushels and maximum
was 33.5. These estimates of the standard deviations at the field level
appear to increase for later forecasts. A paired t-test was run to compare
the estimated standard deviations of biological yield forecasted at August
1 with the standard deviations from the final estimates to see if there was
a significant increase over time. With eight degrees of freedom, the |t| =
2.03 was significant at the 90% confidence level. To determine which com-
ponents of yield were contributing to this increase in variation, a paired
t-test was run for the estimates of the standard deviation for both the
number of ears and the weight per ear. The largest contributor was average
weight per ear, with |t| = 4.4 which was significant at the 99% level. The
"number of ears'" seemed to contribute less, with a t-value that was signifi-
cant with 807% confidence but not with 90%.
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These results were not surprising. Model produced variables (the early
season forecasts) in general tend to be less variable than the population
on which they are based since the models tend to average small variations
in the data. Other factors that could contribute to this increase in
measured variability as the season progresses are: the possibility that
there existed little variation in the input variables during the early
part of the season, measurement errors that tend to eliminate variability,
and environmental conditions later in the season that tend to influence
yield inconsistently throughout the field.

Whichever of these factors contributed, the situation exists that the
reliability of early forecasts is overstated. Also, growing condition
changes in later season could easily invalidate any earlier confidence
in the estimates. Results show that for the nine fields in this study,
six estimates of final yield lay outside one standard deviation of the
August 1 forecast.

The actual percent deviation from the final estimates are given in Table

4 on the following page. For the August 1 forecast, the average deviation
(absolute) across fields was 15%. By September 1, the average deviation
for those fields not harvested was about 7% with only two fields outside
the 5% level. Thus using the absolute percent deviation from the final
estimate as a gauge to evaluate the forecasting potential of the between-
year models, they seemed to do well one month before the final estimate,
but poorly when two months away.
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Table 4~--Percent deviations of crop cutting forecasts of
yield and components of yield from final estimates

Percent Deviations
Forecast Biological Weight Number

Field Date Yield Per Ear of Ears
August 1 23.1 -6.8 32.2
’ Sept. 1 -4.9 ~-7.6 2.5
August 1 -18.0 -22.0 3.1
’ Sept. 1 -18.2 -21.3 2.5
August 1 16.5 -3.6 19.9

’ Sept. 1 0.0 L/ 0.0 L/ 0.0 %/
August 1 17.0 7.0 8.0
’ Sept. 1 3.7 3.5 1.8
August 1 22.0 6.7 14.5
’ Sept. 1 7.6 7.6 0.0
August 1 4.7 6.3 -2.1

° Sept. 1 0.0-l/ 0.0 1/ 0.0'l/
August 1 -1.4 -2.2 -0.9

! Sept. 1 0.0 1/ 0.0 1/ 0.0 1/
August 1 -16.8 -17.7 0.0

| Sept. 1 0.0 Y/ 0.0 Y 0.0 Y
August 1 17.1 -0.3 17.9
’ Sept. 1 -0.1 0.0 0.0
Average August 1 15.2 8.1 11.0
(Absolute) Sept. 1 2/ 6.9 8.0 1.4

1/ Field was judged mature at Sept. 1 visit.

g/ Fields harvested on Sept. 1 visit were excluded from average.
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HARVEST LOSS ESTIMATION

After each field was harvested, sixteen plots were laid out in the field
to make measurements of the reduction in yield due to grain loss during
harvesting procedures. These post-harvest plots were paired with the
pre-harvest plots, and an attempt was made to make all observations with-
in two to three days after harvest. The actual grain found on the ground
inside the unit was picked up and sent to the lab for weights and moisture
testing. The figure for harvest loss was found by expanding the weight

of the grain found in this area to an acre basis and adjusting for mois-
ture percent. No historical parameters were used for this estimate.

weight of loose conversion
grain on ground factor

weight of grain

HL =
(from ears

) + (2) (

where the grain weight was adjusted to 15.5% moisture, expanded to the acre
level, and expressed in bushels. The multiplier (2) was used for weight
of loose grain since it was collected in only half the unit.

The harvest loss procedures gave an estimate of visible grain left on the
ground after harvest. This does not necessarily constitute all of harvest
loss, the portion of biological yield produced by the plants that was not
measureable by the farm operator after harvest. Measurement errors as well
as field conditions would tend to increase the differences in the two con-
cepts and can lead to an underestimation of actual harvest loss. Some of
these conditions are:

1) Mud or snow on ground such that grain is no longer visible.

2) Bird or animal destruction of grain. This can be sub-
stantially reduced by timely collection of data.

3) Powdering of grain by the combine. Once the kernels are
crushed, grain lost in this way cannot be measured.

Table 5 on the following page shows the estimates of harvest loss for all
nine fields.
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Table 5--Estimates of harvest loss and variation in bushels per acre

Mean Harvest Standard

Loss Deviation

Field in Bushels in Bushels
1 21.1 8.4
2 7.7 4.7
3 4.0 2.8
4 10.8 7.1
5 24.7 5.7
6 1.7 2.1
7 6.1 4.6
8 0.9 0.3
9 6.2 4.2
Average 9.2 4.4

A nested analysis of variance was run across all fields. The within-field
variation accounted for only 237 of the total variation, with 777 occurring
between fields. The average harvest loss pooled over all fields was 9.3
bushels per acre with standard deviation of 4.6 bushels per acre. This
produced a high CV of 507 for the grain recovered after harvest.
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Using the above estimate of variability, calculations were made to deter-
mine the within-field sample sizes needed for the given precision at 95%
confidence.

Table 6--Harvest loss sample size estimates

Maximun allowable
error in bushels 1 3 S 8 10 12
at 957 confidence

Sample size

needed 82 10 4 2 1 1

The results show that estimates of harvest loss could have been affected
by a 2 to 3 bushel error due to sampling.

This harvest loss estimate was available for use in adjusting the final
biological yield estimates for each field, but was not available for any

of the forecasts since it could only be calculated after harvest was com-
pleted. TFor these, a historical statewide average of percent of biological
yield actually harvested was used to adjust for harvest loss. This average,
like the other historically based parameters, was computed from the three
year base data for the entire state of Missouri. For the 1977 growing sea-
son in these nine fields, the historical average underestimated the actual
harvest loss.
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ANALYSIS OF ESTIMATING CAPABILITY OF MODELS

Both the "between-year" linear models and the "within-year" growth models
were examined to analyze their forecasting capability. To do this, the
forecasts from the models were compared with the final estimates produced
by the models at maturity. The second part of examining a forecasting
model is to use some type of check data to tell if there were any biases
in the model estimates of final yield and to estimate the variability
present.

The check data used were the farmer harvested production for the field as
weighed at the elevator. This total production weight adjusted to stan-
dard moisture, was divided by the farmer estimate of field acreage to
produce a yield per acre figure. Data collection procedures for obtaining
the elevator weights worked well and seemed to provide a reliable source
of check data for field level estimates. One possible problem that could
affect the yield figure from the elevator weights is the farmer's estimate
of field acreage. An overestimate of acreage, i.e. a fencepost to fence-
post type estimate, would produce an underestimate of yield. Future
research should examine such a possibility.

Table 7 shows the yield based on grain weighed at the elevator and the

final estimates from the models adjusted by the harvest loss estimates for
all fields. The bar graph (Figure 10) shows each model's percent deviation
from the elevator yield figure. The final estimates from the "between-year"
(objective yield) procedures were made by a direct expansion of crop cutting
measurements.

The bar graph is arranged by fields with increasing yield (as measured at
the elevator). It shows awide range of deviations of all models from the
check data. The largest deviation, over 50%, occurred in field 2. The
smallest deviation was approximately one percent. In all fields, the de-
viation was over 57 from at least one model. Field 8 had all growth models
under 57 absolute deviation but the linear model deviation was over 6%.

It was interesting to note that although all model estimates seemed to
deviate greatly from the yield figure determined at the elevator, there was
less evidence of such deviation among themselves within a field. All three
growth model estimates remained relatively consistent in relationship to
each other. The crop cutting estimates in all but two fields were close

to the growth model estimates. 1In one of these two fields the crop cutting
estimate was 20 to 30 percentage points lower while in the other field it
was about 30 points higher.
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Table 7--Final yield estimates and percent deviations from elevator check data

Field
Model 1 2 3 4 5 6 7 8 9 Average
Unadjusted Estimate 73.1 135.3 82.8 50.0 80.8 87.8 109.1 112.1 112.2
Logistic Deviation 7.3 50.2  16.0 10.9 16.4 10.0 -12.5 1.1 39.7 15.5
Standard Estimate 73.2  131.2 84.3 49.2 78.8 82.9 112.4 113.6 108.9
Error
Logistic Deviation 7.5 45.6  18.1 9.1 13.5 3.9 -9.9 2.4 35.6 14.0
Logistically Estimate 72.9 129.1 81.7 50.0 77.0 83.3 103.7 107.9 107.1
Adjusted L
Lopistic Deviation 7.0 43.3  l4.4  10.9 11.0 4.4 -16.8 -2.7 33.4 11.7
Crop Estimate 72.7 135.3  87.5 63.4 84.2 78.9 122.0 103.1 91.5
Cutting Deviation 6.8 50.2 22.5 40.6 21.3 -1.1 -2.2 -7.0 13.9 16.2
Elevator Estimate 68.1  90.1 71.4 45.1 69.4 79.8 124.7 110.9  80.3
Check Data
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Figure 10--Deviations of final yield estimates from elevator check data
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The deviations from the check data were much larger than desirable. Given
the assumption that the check data were valid there were several possibil-
ities why the deviations might be large:

1) The variability within a field was too great to estimate
field yield accurately with only sixteen plots per field.

2) There was an overestimation of the precision of the estimators.

3) The variability was correctly estimated but some type of
bias existed.

These three possibilities can be better addressed by looking at the crop
cutting estimates made by the between-year procedures. These techniques are
very simple and straightforward, and thus any biases should be easier to
locate than in the growth models. The other reason to concentrate less on
the within-year models at this point is that it was not practical to make
plot level runs of the logistic models for all fields. This was due to the
computer costs involved and the problems with convergence that were experi-
enced when trying to fit the logistic model to a very small number of data
points. Thus most of the analysis concentrated on the crop cutting estimates,
and results were transferred .to the growth model estimates when it appeared
appropriate.

To check out the first possibility, the estimates of the standard deviations
for the final "biological yield" figures for crop cutting were examined.
(Analysis of harvest loss has already shown that it contributed only a small
percentage of within field variability). These biological yield estimates

do indeed show a great deal of variability on the field level. An analysis
of variance was run to calculate a variance within fields across all fields.
(This requires the assumption that variance within a field is equal for all
fields.) The estimated mean was 102.4 bushel per acre with standard devia-
tion 22.8. The analysis of variance showed slightly more variation within
fields than between fields, an unexpected result. However, the between field
variation was based on a nonrandom sampling procedure. The following table
gives the within field sample size to obtain estimates within a 95% confi-
dence interval of various lengths. To get within + 5 bushels would have
required over 80 units in the research field. Twenty units would have gotten
within + 10 bushels. These estimates came from fields of 26 acres or less.
Using larger fields in the future could easily increase the within field vari-
ability.
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Table 8--Biological yield (by crop cutting techniques)
sample size estimates

Maximum allowable
error in bushels 1 3 5 8 10 12 15 20
at 957 confidence

Sample size
needed 2003 223 81 32 20 14 9 5

Given our sample size of sixteen units per field, it now appeared unrealistic
to have looked for even unbiased estimates to have absolute deviation from

the true value within 5% or even 10%. To examine what could be expected from
the model estimates if no bias existed, 95% confidence intervals for harvested

yield were calculated using the within field estimate of variance 0%, from

each field. Half the interval width, ¢(2.131)/v16, is given in Table 9 for ea:
field. The bar graph has been repeated showing the confidence intervals.

Table 9——0(2.131)//I6—-used in construction of 95% confidence intervals
for deviations of final yield estimates (in bushels and percent)

Field
1 2 3 4 5 6 7 8 9
Bushels 14.1 15.3 8.5 15.1 15.1 10.7 12.0 7.4 17.8

7% 0f elevator
yield figure 20.7 17.0 11.9 33.5 21.8 13.4 9.6 6.6 22.2

Only three of the nine fields had the estimates from all models within the
confidence band. The crop cutting estimate was inside the band for only five
fields. Thus for almost one half of the fields, the estimates lay outside the
95% confidence interval, even though estimates of within field variation had
made these intervals quite large. In fact, estimates from two of the fields did
not even lie in a 99.9% confidence interval. Such outcomes were highly unlikely
if the estimates were in fact unbiased, therefore one must conclude that vari-

ation due to sample size did not adequately explain the large deviation in the
model estimates.
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We are left with the other two possibilities cited: the estimates were
unbiased but the variability within fields was greatly underestimated,
or the estimates were biased.

The bar graph in Figure 11 not only shows large deviations from the true
value, but also that those deviations are in fact almost always in the
positive direction, overestimating the true yield. 1If the estimates were
unbiased, one would expect to see both over and underestimation of the
true yield.

It is the author's conclusion that the four models being evaluated tended
to consistently overestimate the true yield figure. Averaging the per-
cent deviation for the four models across the nine fields gave some indi-
cation of the size of this bias.

The results are tabulated in Table 7. The average deviation across fields
ranged from a low of 11.7 bushels per acre from estimates produced by the
logistically adjusted growth model to a high of 16.2 bushels produced by

the between-year crop cutting model. In six of the nine fields, deviations
produced by estimates from all models were positive, while Field 7 was the
only field in which all models underestimated yield. Yield in Field 2 was
overestimated by 40% to 50% by all of the models. The overestimation of
yield differed considerably from field to field, but the bias was consistent
for different models within the same field. Future research efforts should
be undertaken to quantify this bias and pinpoint its sources.
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SUMMARY AND RECOMMENDATIONS

The logistic growth models were evaluated to determine their forecasting
abilities. The 1977 growing season in Missouri was earlier than usual,
allowing seven weeks of data to be available to run the models for the
September 1 forecast date. With this much data available, all forecasts
(with the exception of one field) were within 5% of the model's final
estimate. This was considered a good September 1 forecast. If fewer
weeks of data had been available, the forecast would have been less re-
liable.

As data from each field were run to produce weekly forecasts of yield,
there was no evidence of an upward creeping effect of the forecasts as
maturity was approached. This effect has been noticed in growth data
collected since 1975, and was considered a serious problem. The data
collected in these years were fitted for state level forecasts and so one
would expect more variability in that type of data than in data collected
at the field level. These results tend to suggest that the upward trend
could be caused by trying to fit together into a single model data which
actually fit several models with distinct parameters. The possibility of
running more than one model per state for these earlier data sets should
be explored. Data could be aggregated based on criteria using weather
conditions, agricultural practices, etc.

Two different adjustments to the model were made to alleviate heterosce-
dasticity. The unadjusted model and the two adjusted models were compared.
The analysis failed to produce a clear-cut decision on which of the ad-
justed models was best overall. The standard error model came out ahead
in terms of smaller residual mean squares and less heteroscedasticity.

The logistically adjusted model had smaller deviations of forecasts from
the final model estimates, although the differences were not large enough
to be statistically significant. At this time, two recommendations are
made:

1) Future analysis of these data should involve the use of
the techniques discussed by Larsen in his analysis of
wheat growth data to try other adjustments for heterosce-
dasticity. It is hoped that such an analysis may produce
a model which is best overall for corn growth.

2) Until further research is completed, it is the author's
opinion that an equal weighted average of the forecasts
from the two adjusted models provides the most information.

The between-year linear regression models were run with the data collected
and evaluated as to their forecasting potential. Parameters used in the
models were historically derived for the entire state of Missouri. This
may have affected their forecasting performance. Results from the analysis
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indicated that within-field variability was understated for early fore-
casts. In six of the nine fields, the final yield estimate produced by
the models was outside one standard deviation of the August 1 forecast.
By the September 1 forecast the average deviation from the final estimate
was approximately 7%, similar to results with the within-year growth
model.

The final estimates (adjusted for harvest loss) from both the between-

year linear models crop cutting techniques and the within-year growth
models were compared to each other and to independent check data on total
field production as measured at an elevator. The within-year growth model
and the crop cutting techniques gave similar estimates of field biological
yield. ©Neither did consistently better than the other. Estimates of
within field variability obtained from the crop cutting estimates were

very high. The pooled estimate of the standard deviation was 22.8 bushels
per acre. Thus a large sample size would be necessary to get precise field
level estimates.

A more disturbing result from this analysis was that all of the models
examined were estimating something quite different from harvested yield per
acre as measured by elevator weight of grain and the farmer's estimate of
field size. As reported above, all models produced similar field level
estimates of yield. Using the estimates of within field variability obtain-
ed from the crop cutting procedures, a 95% confidence region was calculated
about the elevator yield figure for each field.

Only three of the nine fields had estimates from all models within the
confidence band. The objective yield estimate was inside the interval for
only four fields, while estimates from two of the fields even lay outside
a 99.9% confidence interval. The biases in the estimates seemed to con-
sistently overestimate the elevator yield figure, with average deviation
running from 11% to 17%, depending on the model. The deviations of the
crop cutting procedures were largest.

Research should be undertaken to identify the sources of such biases,
especially those that exist in such straightforward techniques such as
crop cutting. Possible sources of bias that should be examined include:
1) Underestimation of harvest loss.
2) Estimation procedures for determining percent moisture
and shelling fraction. This would only affect the bias

in the objective yield model.

3) Possible errors in obtaining elevator data.
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4)

5)

6)

The possibility that the location of field plots may not
be random.

The accuracy of the farmer's estimate of field size.
The accuracy of field scales in weighing harvested ears.

Again, this would only affect a bias in the objective
yield model.
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Table

Al--Estimates at cutoff dates - field 1

Weeks
0f - R P>
Model Data o a./a RMS R? R(r,t) [R(r,t)}
2%
3 146. 74.1 328. .926 .468 .0008
4 159. 19.2 557. .929 .611 .0001
5 154. 9.6 925. .923 .637 .0001
Unadjusted
6 175. 10.2 1409. .913 .519 .0001
7 157. 6.0 1987. .895 .588 .0001
8 150. 5.2 2425. . 884 .638 .0001
9 148. 3.9 2390. .892 .532 .0001
2%
3 177. 38.3 i. .921 .108 . 4630
4 150. 10.9 1. . 940 .138 L2764
Standard 5 155. 3.1 1. .972 .041 .7197
Error
Adjustment 6 171. 6.3 1. 971 -.005 .9633
7 159. 5.0 1. .935 .026 .7829
8 151. 4.5 1. .923 .072 L4193
9 148. 3.6 1. .924 .070 L4023
2%
3 470. 181.8 2. . 881 .022 .880
4 163. 22.4 2. .878 -.104 L4136
Logistic 5 153. 11.2 2. .877 -.121 .2846
Adjustment
6 159. 8.1 2. .878 -.078 .4500
7 152. 6.5 2. .875 -.018 .8535
8 148. 5.5 2. .879 .062 .4861
9 147. 5.0 2. . 866 -.164 .0499

* Convergence

not obtained
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Table A2-~Estimates at cutoff dates - field ?

Weeks
of - ~ A P>
Model Data a o&/a RMS R? R(r,t) |R(r,t)[
2%
Ik
4 114. 27.1 257. .912 .629 .0001
5 192. 20.6 408. .939 .641 .0001
Unadjusted
6 157. 8.2 791. .926 .544 .0001
7 186. 9.6 1374. .909 .513 .0001
8 148, 5.3 1979. .883 .586 .0001
9 153. 4.6 2344. . 882 .599 .0001
2%
%
4 170. 46.1 1. .880 .078 .5403
Standard 5 185. 15.9 1. .912 .082 .4691
Error
Adjustment 6 150. 3.0 1. .982 -.016 .8773
7 164. 3.1 1. .967 .153 .1070
8 156. 4.8 1. .924 .020 .8256
9 156. 4.0 1. .922 .067 L4249
2%
kL
4 214. 75.4 2. . 850 -.120 . 3444
Logistic 5 195. 19.5 2. .891 -.061 .5935
Adjustment
6 158. 8.7 2. .901 .112 .2788
7 165. 6.9 2, .888 121 .2020
8 149. 6.6 2. .864 -.073 .4158
9 151. 5.4 2. .871 .027 . 7480

* Convergence not obtained
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Table A3—-Estimates at cutoff dates - field 3

Weeks

of " A P>
Model Data a o-/a RMS R? R(r,t) |R(r,t)|
2 48. 11.9 105. .930 .580 .0005
3 111. 45.7 380. .880 .559 .0001
4 131. 18.9 377. .937 .400 .0011
5 155. 11.5 489. .948 .387 .0004

Unadjusted
6 153. 7.0 873. .933 .376 .0002
7 150. 4.9 944, .939 .375 .0001
8 142. 3.6 1086. .936 .387 .0001
9 140. 3.1 1278. .930 .450 .0001
2 63. 29.2 1. .927 .326 .0683
3 85. 18.6 1. .927 .269 L0643
4 110. 6.0 1. .957 .220 .0807
Standard 5 145. 6.4 1. .961 .230 .0398
Error
Adjustment 6 156. 5.0 1. .963 .076 . 4606
7 148. 3.2 1. .968 .106 .2670
8 144, 2.6 1. .966 .046 .6083
9 143, 2.4 1. .962 .052 .5395
2 64. 24 .4 1. .927 .326 .0686
3 75. 16.2 1. .902 .241 .0991
4 110. 7.9 2. .931 .140 .2699
Logistic 5 135. 6.7 2. .938 .237 .0340
Adjustment

6 142, 6.1 2. .923 .137 .1833
7 143. 4.5 2. .929 121 .2020
8 139. 3.7 2. .928 .087 .3262
9 138. 3.6 2. .924 .082 .3266
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Table A4--Estimates at cutoff dates - field 4

Weeks
Of N PO P>
Model Data o o&/u RMS R? R(r,t) |R(r,t)|
2%
3 126.5 60.1 70.9 .909 .433 .0021
4 187.4 45.3 130.3 .929 .529 .0001
5 251.5 35.5 208.8 .950 .521 .0001
Unadjusted
6 141.9 11.1 862.9 . 870 .368 .0002
7 127. 4 6.6 916.2 .883 . 400 .0001
8 130.6 5.6 1083.7 . 883 427 .0001
9 126.1 4.6 1318.3 .872 478 .0001
2%
3 220.3 55.2 .9 .994 -.006 .9664
4 191.8 35.9 .9 .940 .012 .9275
Standard 5 197.1 15.8 .9 . 949 .134 .2354
Error
Adjustment 6 144.3 6.7 1.0 .938 -.018 .8583
7 131.9 4,7 1.0 .935 .016 .8643
8 133.6 3.7 .9 .934 .071 L4227
9 124.2 3.9 1.0 .921 .047 .5770
2%
3 50.2 78.9 44,2 .849 -.490 .0004
4 6.8 44,1 3813.5 . 842 -.504 .0001
Logistic 5 166.8 16.8 3.0 .907 ~.237 .0346
Adjustment
6 119.4 30.5 46.1 .851 -.431 .0001
7 119.3 20.0 29.4 . 854 -.412 .0001
8 126.3 9.9 8.0 .864 -.340 .0001
9 126.1 5.1 1.9 . 859 .085 .3115

* Convergence not obtained
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Table AS5--Estimates at cutoff dates — field 5

Weeks
of R A P>
Model Data 0&/a RMS R2 R(r,t) [R(r,t)[
2%
3 183. 67.8 175. . 940 .602 .0001
4 117. 16.7 366. .934 .358 .0037
5 172. 29.6 906. .902 .483 .0001
Unadjusted
6 142. 9.5 1064, .917 .499 .0001
7 134. 5.9 1321. .916 .486 .0001
8 128. 4.2 1497. .914 . 459 .0001
9 135. 3.9 1713. .916 .426 .0001
2%
3 198. 46.7 1. .950 .010 .9452
4 121. 8.2 2. .978 -.094 L4611
Standard 5 117. 10.1 1. .943 .322 .0035
Error
Adjustment 6 129. 6.1 1. . 946 .225 .0272
7 128. 4.7 1. . 944 .185 .0511
8 127. 3.8 1. . 945 .135 L1277
9 132. 3.0 1. .946 .151 .0716
2%
3 166. 39.6 2. .935 .164 .2667
4 113. 10.8 3. .939 -.027 .8352
Logistic 5 108. 9.6 2. . 894 . 343 .0018
Adjustment
6 122. 6.3 2. .905 .236 .0209
7 124. 5.0 2. .906 .188 .0468
8 122. 4.2 2. .906 . 154 .0824
9 129. 3.7 2. .907 .173 .0381

* Convergence not obtained
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Table A6--Estimates at cutoff dates - field 6

Weeks
of R R P>
Mode 1 Data o&/a RMS R2 R(r,t) |R(r,t) |
2 75.5 27.4 241, .884 .739 .0001
3 153.8 19.3 303. .944 . 348 .0154
4 224.2 24,3 788. .915 JA4l4 .0007
5 268.0 30.2 1322. .902 456 .0001
Unadjusted
6 209.7 12.7 1678. .902 .508 .0001
7 178.3 7.1 1965. .898 467 .0001
8 167.6 5.1 2176. .895 441 .0001
g%%
2 69.9 22.6 1. .905 .084 .6486
3 140.3 7.8 1. .968 .025 .8685
4 214.0 7.4 1. .964 .090 .4807
Standard 5 220.8 9.7 1. .941 .086 L4478
Error
Adjustment 6 177.1 7.5 1. .904 .118 .2528
7 172.9 4.6 1. .919 .092 .3343
8 158.2 3.0 1. .933 .107 .2286
k%
2 75.5 80.0 61. .869 -.658 .0001
kL
4 167.7 14.0 1. .897 .196 .1203
Logistic 5 176.7 10.7 1. .882 .181 .1090
Adjustment
6 173.5 7.5 1. .884 .138 .1813
7 163.4 5.6 1. .884 .090 .3436
8 159.0 4.7 1. .884 .063 L4773
9%*

* Convergence not obtained

** Field harvested
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Table A7--Estimates at cutoff dates - field 7

Weeks
of . -~ A P>
Model Data a g~/ RMS R# R(r,t) [R(r,t)[
2 153. 29.3 286.9 .952 .410 .0199
3 137. 10.3 513.4 .948 .331 .0217
4 176. 11.9 1060. .931 . 369 .0027
5 203. 8.5 1217. .943 . 340 .0020
Unadjusted
6 214. 7.6 1812. .932 . 360 .0003
7 212, 6.5 2554, .917 .338 .0003
8 202. 4.7 2921. .913 .343 .0001
9 200. 4.1 3260. .908 .293 .0004
2 155. 19.3 1. .948 -.054 .7699
3 135. 3.7 1. .977 -.078 .5994
4 166. 5.2 1. .970 .105 .4102
Standard 5 188. 4.7 1. .971 .136 .2305
Error
Adjustment 6 199. 4.9 1. .968 .085 L4127
7 207. 2.9 1. .972 .048 .6125
8 201. 2.6 1. .970 .040 .6517
9 207. 2.6 1. .965 -.028 . 7354
2 173. 41.4 2. .930 .016 .9295
3 138. 9.6 2. .924 -.213 1464
4 156. 8.5 2. .925 .125 .3238
Logistic 5 186. 6.5 2. .935 .151 .1820
Adjustment
6 193. 6.0 2. .926 .153 .1379
7 192, 5.0 2. .914 .135 .1562
8 191. 4.3 2. .911 . 055 .5383
9 190. 3.8 2. .907 .027 . 7501
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Table A8--Estimates at cutoff dates - field 8 .

Weeks
of . oA P>
Model Data O&/a RMS R? R(r,t) IR(r,t)l
2 133.4 54.6 297.8 .928 .378 .0329
3 173.7 14.6 306.3 .968 . 240 .0998
4 174.8 6.5 526.9 967 .316 .0111
5 201.3 6.0 701.5 .968 .257 .0215
Unadjusted
6 189.8 4.3 1226.0 .952 418 .0001
7 194.6 3.3 1279.3 .957 .367 .0001
8x*%
g%k
2 115.8 23.5 1.4 .951 -.127 .4896
3 166.3 7.7 1.4 .985 .012 .9333
4 176.3 4.6 1.3 .981 .042 .7411
Standard 5 203.6 3.7 1.2 .981 .043 .7056
Error
Adjustment 6 195.6 3.8 1.3 .976 .000 .9978
7 197.2 2.9 1.2 974 .052 .5826
8% *
gx*k
2%
3%
L%
Logistic 5 189.1 4.7 2.5 .962 111 .3256
Adjustment
6%
7 187.4 3.5 2.4 .953 .082 .3904
8%%
Q%%

* Convergence not obtained
**% Field harvested
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Table A9--Estimates at cutoff dates - field 9

Weeks
of - A A P>
Model Data a o&/a RMS RZ2 R(r,t) ]R(r,t)]
2%
3%
4 129. 14.2 209. . 944 .534 .0001
5 231. 20.5 384. .940 .482 .0001
Unadjusted
6 212. 12.4 638. .938 .562 .0001
7 224. 7.0 813. .949 .581 .0001
8 206. 5.0 1177. .940 .540 .0001
9 210. 4.0 1394. .941 .507 .0001
2%
3%
4 138. 13.0 1. .936 -.016 .8973
Standard 5 216. 7.4 1. .980 .045 .6902
Error
Adjustment 6 209. 3.4 1. .981 .128 .2151
7 216. 5.3 1. .953 .201 .0338
8 198. 3.9 1. .949 . 149 .0926
9 204. 3.0 1. .952 .191 .0216
2%
3%
4 189, 27.4 2. .918 .086 .5007
Logistic 5 222. 18.7 3. .930 -.252 .0241
Adjustment
6 191, 8.8 1. .921 .240 .0184
7 206. 5.9 1. .931 . 281 .0027
8 196. 4.6 1. .925 .217 .0138
9 200. 3.7 1. .928 .186 .0260

* Convergence not obtained
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6G

Table AlO--Percent deviations of logistic model forecasts from final (9 week) estimates

Weeks Of Field
Data Model 5 8

Unadjusted 7. -25. -6. 48. -13. 33.8 -12, -10.2 -38.5

4 Standard Error 1. 8. -22. 54. -8. 35.3 -19. -10.6 -32.
Logistic 10. 41. -20. -94.6 -12. 5.5 -18. * =-5.
Unadjusted 4, 25. 10. 99, 27. 59.9 1. 3.4 9.

5 Standard Error 4. 18. 1. 58. -11. 39.6 -9. 3.2 6.
Logistic 3. 29. =2. 32. -15. 11.1 -2. .9 10.
Unadjusted 18. 2. 9. 12. 4. 25.1 6. -2.5 1.

6 Standard Error 15. -3. 9. 16. -2. 11.9 -3. ~.8*% 2.
Logistic 7. 4. 2. -5. -5. 9.1 1. * -4,
Unadjusted 5. 21. 7. 1. - 6.4 5. 6.

7 Standard Error 7. 5. 3. 6. -2. 9.3 5.
Logistic 2. 9. 3. -5. -3. 2.8%% 1. 2.
Unadjusted 1. -3. 1. 3. -5. 1. ~1.

8 Standard Error 2. 0. 1. 7. -3. -2. -2.
Logistic -1. -5. =-2.

¥

k%

Convergence not obtained

Field harvested



Table All--Forecasts and estimates of yield, components of yield,
and variation generated by the objective yield models

field 1

Variable Aug. 1 Sept. 1 Oct.

Mean .354 . 351 .380
Wt. Per Ear

S.D. .025 .046 .084

Mean 15.6 12.1 11.8
Number of Ears

S.D. 2.7 2.3 2.3

Mean 115.5 89.2 93.8
Biological Yield

S.D 20.8 20.4 26.2
Harvested Yield Mean 107. 4 82.9 87.3
Historic Harvest Loss S.D. 19.3 19.0 24 4
Harvested Yield Mean 94.3 68.1 72.7
Current Harvest Loss S.D. 23.5 29.7 26.5
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Table Al2--Forecasts and estimates of yield, components of yield,

and variation generated by the objective vield models —---- field 2
Variable Aug. 1 Sept. 1 Oct.

Mean . 330 .333 .423
Wt. Per Ear

S.D. .015 .017 .087

Mean 16.8 16.7 16.3
Number of Ears

S.D. 2.2 2.9 3.2

Mean 117.3 117.0 143.1
Biological Yield

S.D. 14.0 19.5 26.9
Harvested Yield Mean 109.1 108.8 133.1
Historic Harvest Loss S.D. 13.0 18.1 25.0
Harvested Yield Mean 109.5 109.3 135.3
Current Harvest Loss S.D. 14.0 19.9 28.7
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Table Al3--Forecasts and estimates of yield, components of yield,

and variation generated by the objective yield models --—- field 3
Variable Aug. 1 Sept. 1 Oct.
Mean . 348 .361
Wt. Per Ear
S.D. .017 .043
Mean 18.1 15.1
Number of Ears
S.D. 2.1 2.6
Mean 106.7 91.6
Biological Yield
S.D. 11.1 15.0
Harvested Yield Mean 99.3 85.2
Historic Harvest Loss S.D. 10.3 14.0
Harvested Yield Mean 102.7 87.5
Current Harvest Loss S.D. 11.1 16.0

* Field harvested
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Table Al4--Forecasts and estimates of yield, components of yield,

and variation generated by the objective yield models ----- field 4
Variable Aug. 1 Sept. 1 Oct.

Mean .368 .356 . 344
Wt. Per Ear

S.D. .081 .033 .068

Mean 12.2 11.5 11.3
Number of Ears

S.D. 3.9 3.8 3.6

Mean 75.6 67.0 64.6
Biological Yield

S.D. 33.5 21.7 26.0
Harvested Yield Mean 70.3 62.3 60.0
Historic Harvest Loss S.D. 31.1 20.2 24.9
Harvested Yield Mean 68.2 63.3 63.4
Current Harvest Loss s.D. 31.0 25 .4 28.4
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Table Al5--Forecasts and estimates of yield, components of yield,

and variation generated by the objective yield models ———-- field 5
Variable Aug. 1 Sept. 1 Oct.
Mean .349 .352 .327
Wt. Per Ear
S.D. .030 .040 .072
Mean 19.0 16.6 16.6
Number of Ears
S.D. 2.3 2.4 2.7
Mean 132.9 117.2 108.9
Biological Yield
S.D. 19.7 22.1 27.8
Harvested Yield Mean 123.6 109.0 101.3
Historic Harvest Loss 3. D. 18.3 20.6 5.9
Harvested Yield Mean 108.2 92.5 84.2
Current Harvest Loss S.D. 19.9 22.1 28.3
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Table Al6--Forecasts and estimates of yield, components of yield,

and variation generated by the objective yield models ---—— field 6
Variable Aug. 1 Sept. 1 Oct.
Mean .374 .352
Wt. Per Ear
S.D. .032 .063
Mean 14.0 14.3
Number of Ears
S.D. 1.9 2.5
Mean 84.4 80.6
Biological Yield
S.D. 14.6 19.5
Harvested Yield Mean 78.5 74.9
Historic Harvest Loss S.D. 13.6 18.1
Harvested Yield Mean 82.7 78.9
Current Harvest Loss s.D 15.6 20.0

* Field harvested
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Table Al7--Forecasts and estimates of yield, components of yield,

and variation generated by the objective yield models ----- field 7
Variable Aug. 1 Sept. 1 Oct.
Mean . 359 .367
Wt. Per Ear
S.D. .027 .072
Mean 21.8 22.0
Number of Ears
S.D. 3.2 3.2
Mean 126.4 128.2
Biological Yield
S.D. 21.3 21.7
Harvested Yield Mean 7.5 119.2
Historic Harvest Loss S.p. 19.9 20.2
Harvested Yield Mean 120.3 122.0
Current Harvest Loss $.p. 23.2 225

% TField harvested
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Table Al8--Forecasts and estimates of yield, components of yield,

and variation generated by the objective yield models —-——-—- field 8
Variable Aug. 1 Sept. 1 Oct. 1 %
Mean 371 451
Wt. Per Ear
S.D. .027 .067
Mean 14.2 14.2
Number of Ears
S.D. 2.0 2.0
Me an 86.5 104.0
Biological Yield
S.D. 12.5 13.7
Mean 80.4 96.7
Harvested Yield
Historic Harvest Loss S.D. 11.6 12.8
. 103.1
Harvested Yield Mean 85.6 03
Current Harvest Loss s.D. 12.6 13.8

* Field harvested
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Table Al9--Forecasts and estimates of yield, components of yield,

and variation generated by the objective yield models —=——- field 9
Variable Aug. 1 Sept. 1 Oct.
Mean .388 . 389 . 389
Wt. Per Ear
S.D. .029 .042 .049
Mean 18.4 15.6 15.6
Number of Ears
S.D. 4.6 4.1 4.7
Mean 114.3 97.5 97.6
Biological Yield
S.D. 27.3 28.4 32.2
Harvested Yield Mean 106.3 90.7 90.8
Historic Harvest Loss S.p. 254 26 .4 29.9
Harvested Yield Mean 108.2 91.4 91.5
Current Harvest Loss S.D. 28.0 30.3 33.3
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